Scheduling tree-shaped task graphs to minimize memory and makespan

Lionel Eyraud-Dubois (INRIA, Bordeaux, France),
Loris Marchal (CNRS, Lyon, France),
Oliver Sinnen (Univ. Auckland, New Zealand),
Frédéric Vivien (INRIA, Lyon, France)

New Challenges in Scheduling Theory Workshop, Aussois,
March/April 2014
Introduction

Task graph scheduling

- Application modeled as a graph
- Map tasks on processors and schedule them
- Usual performance metric: makespan (time)

Today: focus on memory

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication: \(\frac{1}{\text{Flops}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency} \)
- Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communications
- Restrict to in-core memory (out-of-core is expensive)
Introduction

Task graph scheduling
▶ Application modeled as a graph
▶ Map tasks on processors and schedule them
▶ Usual performance metric: makespan (time)

Today: focus on memory
▶ Workflows with large temporary data
▶ Bad evolution of perf. for computation vs. communication:
 \(\frac{1}{\text{Flops}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency} \)
▶ Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

▶ Avoid communications
▶ Restrict to in-core memory (out-of-core is expensive)
Introduction

Task graph scheduling

- Application modeled as a graph
- Map tasks on processors and schedule them
- Usual performance metric: makespan (time)

Today: focus on memory

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication: $\frac{1}{\text{Flops}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency}$
- Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communications
- Restrict to in-core memory (out-of-core is expensive)
Focus on Task Trees

Motivation:

- Arise in multifrontal sparse matrix factorization
- Assembly/Elimination tree: application task graph is a tree
- Large temporary data
- Memory usage becomes a bottleneck
Outline

Introduction and related work

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Outline

Introduction and related work

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - \left(\frac{u - t}{2 + z}\right) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

$$7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v$$

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

$$7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v$$

Complexity results

Problem on trees:
- Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):
- P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
- Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$
Impact of Schedule on Memory Peak

Peak memory so far:

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 4

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 4

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 6

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 6

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 8

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 8

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 12

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 12

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 12

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far:

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 9

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 9

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 9

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 11

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 11 (which is better than 12)

Two existing optimal sequential schedules:

▶ Best traversal [J. Liu, 1987]
▶ Best post-order traversal [J. Liu, 1986]
Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

In practice post-order have very good performance
Outline

Introduction and related work

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Model for Parallel Tree Processing

- p identical processors
- Shared memory of size M
- Task i has execution time p_i
- Parallel processing of nodes \Rightarrow larger memory
- Trade-off time vs. memory

![Diagram of a tree structure with nodes and edges labeled with f values.]
NP-Completeness in the Pebble Game Model

Background:

- Makespan minimization NP-complete for trees \((P|trees|C_{\text{max}})\)
- Polynomial when unit-weight tasks \((P|p_i = 1, trees|C_{\text{max}})\)
- Pebble game polynomial on trees

Pebble game model:

- Unit execution time: \(p_i = 1\)
- Unit memory costs: \(n_i = 0, f_i = 1\)
 (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most \(B\) pebbles in at most \(C\) steps is NP-complete.
Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1
There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

For a fixed number of processors:

Theorem 2
For any $\alpha(p)$-approximation for makespan and $\beta(p)$-approximation for memory peak with $p \geq 2$ processors,

$$\alpha(p)\beta(p) \geq \frac{2p}{\lceil \log(p) \rceil + 2}.$$
Outline

Introduction and related work

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
InnerFirst: Post-Order in Parallel

Motivation:
▶ Post-Order behavior: process inner nodes ASAP
▶ Parallel version: give priority to inner nodes
▶ Naturally limits the number of concurrent subtrees
▶ Intuitively good to keep memory low

Implementation as a list-scheduling heuristic
▶ Put ready nodes in a queue (higher priority for inner nodes)
▶ Schedule them whenever a processor is ready
▶ Initially, sort leaf nodes using best sequential post-order

Performance:
▶ \((2 - 1/p)\)-approximation for makespan
▶ Unbounded ratio for memory
▶ \(O(n \log n)\) complexity
DeepestFirst: Approach Optimal Makespan

DeepestFirst:
- Compute critical path values for all tasks
- List-scheduling based on critical path values

Performance:
- Known as a good heuristic for makespan minimization
- No guarantee (or intuition) on memory behavior
- $O(n \log n)$ complexity
Subtrees: Coarse-Grain Parallelism

Motivation:
- Divide the tree in p large subtrees + small set of other nodes
- Each processor works on its own subtree
- Locally, use memory-optimal sequential algorithm
- Process all remaining nodes sequentially
- Optimization: if more than p subtrees when splitting, load-balance subtrees on processors

Performance:
- $O(n \log n)$ complexity
- p-approximation algorithm for memory
How to Cope with Limited Memory?

Motivation:
- Work with a given quantity of memory
- Optimize makespan under this constraint

Stronger assumptions:
- Reduction tree: \(\sum_{j \in \text{Children}(i)} f_j \geq f_i \)
- No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:
▶ Work with a given quantity of memory
▶ Optimize makespan under this constraint

Stronger assumptions:
▶ Reduction tree: \[\sum_{j \in \text{Children}(i)} f_j \geq f_i \]
▶ No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:
- Work with a given quantity of memory
- Optimize makespan under this constraint

Stronger assumptions:
- Reduction tree: \(\sum_{j \in \text{Children}(i)} f_j \geq f_i \)
- No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:
- Work with a given quantity of memory
- Optimize makespan under this constraint

Stronger assumptions:
- Reduction tree: \(\sum_{j \in \text{Children}(i)} f_j \geq f_i \)
- No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:
- Work with a given quantity of memory
- Optimize makespan under this constraint

Stronger assumptions:
- Reduction tree: \[\sum_{j \in \text{Children}(i)} f_j \geq f_i \]
- No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
Memory-Bounded Heuristics: Simple Way

First idea: restrain List-Scheduling heuristics (INNERFIRST and DEEPESTFIRST)

- Choose a feasible amount M of memory
- Check that memory $\leq M$ when starting a new leaf
- Guarantee: Memory used at most $2 \times M$

Proof ideas:
- Reduction tree: memory reduced by processing inner nodes
- During the processing: at most twice the input memory
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme
- Book memory for parent nodes, ensure they can be processed later
- Test for memory (booked + used) when starting a leaf
- Never exceeds a given memory M
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

- Book memory for parent nodes, ensure they can be processed later
- Test for memory (booked+used) when starting a leaf
- Never exceeds a given memory M
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

- Book memory for parent nodes, ensure they can be processed later
- Test for memory (booked + used) when starting a leaf
- Never exceeds a given memory M
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

- Book memory for parent nodes, ensure they can be processed later
- Test for memory \((\text{booked} + \text{used})\) when starting a leaf
- Never exceeds a given memory \(M\)
Outline

Introduction and related work

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Experimental Testbed

- 76 assembly trees of a set of sparse matrices from University of Florida Sparse Collection
- Metis and AMD ordering
- 1, 2, 4, or 16 relaxed amalgamation per node
- 608 trees with:
 - number of nodes: 2,000 to 1,000,000
 - depth: 12 to 70,000
 - maximum degree: 2 to 175,000
- 2, 4, 8, 16 or 32 processors
Results

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Best memory</th>
<th>Avg. normalized memory needed</th>
<th>Best makespan</th>
<th>Avg. normalized makespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtrees</td>
<td>81.1 %</td>
<td>2.33</td>
<td>0.2 %</td>
<td>1.35</td>
</tr>
<tr>
<td>SubtreesOptim</td>
<td>49.9 %</td>
<td>2.45</td>
<td>1.1 %</td>
<td>1.29</td>
</tr>
<tr>
<td>InnerFirst</td>
<td>19.1 %</td>
<td>3.77</td>
<td>37.2 %</td>
<td>1.03</td>
</tr>
<tr>
<td>DeepestFirst</td>
<td>3.0 %</td>
<td>4.26</td>
<td>95.7 %</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Memory normalized with optimal sequential memory
- Makespan normalized with best makespan
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing the relationship between normalized makespan and memory limit with 4 processors.](image-url)
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing normalized makespan and memory limits for 4 processors. The x-axis represents normalized memory limits on a log scale, while the y-axis represents normalized makespan also on a log scale. The graph includes data points labeled as Subtrees.](image)
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing normalized makespan vs. normalized memory limit for 4 processors. The graph compares two heuristics: Subtrees and SubtreesOptim. The x-axis represents the normalized memory limit on a log scale, while the y-axis represents the normalized makespan on the same scale. The Subtrees heuristic is represented by a light orange triangle, and SubtreesOptim is represented by a red line. The graph shows that SubtreesOptim generally results in a lower makespan for a given memory limit.]
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing the comparison between different heuristics (Subtrees, SubtreesOptim, InnerFirst) for normalized makespan and memory limit on a log scale. The graph displays data for 4 processors across various memory limit values. Each heuristic is represented by a different symbol: Subtrees by upward triangles, SubtreesOptim by downward triangles, and InnerFirst by circles. The normalized makespan values range from 1.0 to 1.2, while the normalized memory limit values range from 1 to 20.]}
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing normalized makespan and memory limit with different heuristics]

- **Axes:**
 - Y-axis: Normalized makespan (log scale)
 - X-axis: Normalized memory limit (log scale)

- **Heuristics:**
 - Subtrees
 - SubtreesOptim
 - InnerFirst
 - MemLimitInnerFirst

- **Legend:**
 - Orange triangles: Subtrees
 - Red triangles: SubtreesOptim
 - Blue circles: InnerFirst
 - Blue triangles: MemLimitInnerFirst

- **Data Points:**
 - The graph compares different heuristics in terms of their normalized makespan and memory limits.

- **4 processors:**
 - The graph is labeled as '4 processors' indicating the context of the comparison.

This graph illustrates the trade-offs between makespan and memory usage for different heuristics, which is crucial for optimizing resource allocation in computing environments.
Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

Normalized memory limit (log scale)

- Subtrees
- SubtreesOptim
- InnerFirst
- MemLimitInnerFirst
- MemLimitInnerFirstOptim

4 processors

1 2 4 6 8 10 15
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing makespan vs. memory for different heuristics. The x-axis represents the normalized memory limit (log scale), and the y-axis represents the normalized makespan (log scale). The graph includes lines for Subtrees, SubtreesOptim, InnerFirst, DeepestFirst, MemLimitInnerFirst, MemLimitInnerFirstOptim, MemLimitDeepestFirst, and MemLimitDeepestFirstOptim. The legend indicates the different heuristics and their optimizations. The graph shows the performance comparison under 4 processors.]
Memory-Aware Heuristics: Makespan vs. Memory

4 processors

Normalized makespan (log scale)

Normalized memory limit (log scale)

- Subtrees
- SubtreesOptim
- InnerFirst
- DeepestFirst
- MemoryBooking
- MemLimitInnerFirst
- MemLimitInnerFirstOptim
- MemLimitDeepestFirst
- MemLimitDeepestFirstOptim
Memory-Aware Heuristics: Memory Usage

![Graph showing memory usage for different heuristics. The x-axis represents the normalized amount of available memory, while the y-axis represents the normalized amount of used memory. The graph compares MemoryBooking, MemLimitInnerFirst, MemLimitInnerFirstOptim, and MemLimitDeepestFirst. Each heuristic is represented by a different line on the graph.](image-url)
Memory-Aware Heuristics: Makespan vs. memory

Heuristics:
- ParSubtrees
- ParSubtreesOptim
- ParInnerFirst
- ParDeepestFirst
- ParMemoryBooking
- ParMemLimitInnerFirst
- ParMemLimitInnerFirstOptim
- ParMemLimitDeepestFirst
- ParMemLimitDeepestFirstOptim
Outline

Introduction and related work

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Summary and Perspectives

- Complexity study of parallel tree traversals
- Simple heuristics
- Memory-bounded heuristics
- Simulations on real elimination trees

Future work:
- Consider distributed memory
- Extend results to other class of regular graphs (2D grids, etc.)
- Minimize I/O volume for out-of-core execution
- Consider parallel (malleable) tasks